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ABSTRACT
~ A general variational approach to study systems composed of

complex charged molecules is discussed. In this approach the variational
trial functions for the free energy functioﬁals are constructed from the
asymptotic limiting (AL) forms of the direct correlation functions.A
number of examples are discussed, and in each case the variational form
of the direct correlation is given explicitely. The relation to
Onsager's procedure of immersing the system in an infinite conducting

fluid for obtaining an energy bound is discussed in detail,
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Introduction

“Real fluids are composed of molecules that are objecrts of
complex geometries and charge distributions. In a previous
not;(r) we have shown that, by studying the asymptotic high
density limit (AHDL) and the asymptotic strong coupling limit
(ASCL) one is able to reduce the problem of computing the
thermodynamics and correlation functions of the system to a
geometrical calculation involving overlap integrals between the
objects.

\In previous woriﬂ%a/a simple geometrical, physically
intuitive meaning of the direct correlation functions (dcf) for
point charges in a backgroundg;ﬁ (as interactions between smeared
charges) and hard spheres (as overlap volumes) within the mean
spherical approximation (MSA) was given, thus also revealing its
rnglytic structure. As a result, the above program can be
carried out completely for relatively simple systems (as e.g. the
general ionic mixture of the multicomponent plasmasa's) ugsing the
MSA free energy functional.which interpolates between the exact
weak-(Debye-Huckel) and strong-~("Onsager-type") coupling bounds
for the potentiasl energy. Though featuring fewer "idealistics"
features, in view of the higher complexity of the problem, this
approach was succesfuly used to analvze the "isotropic"-"nematic"

transition of line-charges?'® and the coupling of the growth of

micelles to their degree of alignmenté. In the present
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communication we extend these methods to a much larger class of

objects.

s + ¢ IDEEE B Bo BT o

The proposed approach is to write down an approximate free
energy functional which has to be variational with respect to the
pair functions. These would be either the indirect7 (hij(rlz))

or directe'9 (e (rlz)) correlation functions. In order to get a

1]
convenient formalism, we have to use simple functions with
physically motivated coefficients. Indeed,the direct correlation
function in the asymptotic limits (AL = either AHDL, ASCL)
provides such a simple intfructive basis.

The approximate solutions also provide exact bounds for the
free energy of system. 1In the present work we present a few
results for simple systenm.

In section 2 we discuss the Mean Spherical Approximation
(MSA) for hard core -Green function systems. The ASCL of the MSa
and Hyphernetted Chain (HNC) are discussed in section 3. 1In
section 4 we give the general "Onsager” solution for the charge
smearing problem, which pr9vides the basis - set functions for
the MSA-HNC-ASCL problem. The variational solution by expansion
in this set is discussed in section 5. Section 6 is devoted to
the discussion of the PY theory for hard objects, in parti:ular,
the scaling of the direct correlation function. An interesting
application to bonding and aggregation within the MSA is given in

section 7. Section 8 contains a general discussion and

conclusions.

........
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2, Mean Spherical Approximation for hard-core Green's function

systems

The general charged-hard-objects system to be considered
(and termed hard-core-Green's-function (HCGF) system) consists of

hard objects with imbedded charge distributions

g (F) = > " (e)
Si <¥CQ‘; r\-QG. (2.1)
e, G

» O, . :
where ?'QCE igygormalized charge distribution of
multipolaritcy d , associated with the Green's function (GF) G,
and q?ués the corresponding coupling constant (="charge"). 1In

this discrete representation for polydispersity, an object i of

relative concentration X. is congidered distinct fron j if one of
the characterizations in the tuple i = (shape, size, orientation,
charge distribution) is different from that in j. In addition to

the hard-core repulsion, the pair interaction between two objects

L is
4’(:,-Z:,<ﬁ (2)

Ta v ta Ca (2.2)

1, ] at a distance

where

P eaea * %o ?zssd;‘.*:‘) Phet® Pladt) Poi-z-L0)
(=3

For example, s point monopole and a point dipole at the center of

?L oG : ?Cog J(')-(-)

an object are represented by

Iy o o
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' A
and ?C\GL’Q’ ch‘gz.&‘).‘Y)’respectl.vely. The Coulomb and
screened-Coulomb potentials (C}SQ"‘.\= \/\M QU d Q-*PL.‘h“"‘\/\n\

respectively in three dimensions) are the GF for the 9%

and Q’Z?}G Liouville operators. We use the following
notations: S =LZ"€\/\I‘ = total number density; A= \/v{bT
inverse temperature; overhead tildes denote Fourier transforms;
"det" denotes the determinant;
o a
D = dimensionality; ) = unit matrix J: ; C = matrix of
3 (o)
Ha ~
def's with elements w (X:.5,) ARY = >, %
W%, C‘s ) ) Sre AR T
total monopolar, G - type, Eharge density; ‘;G. = 0,1 according
P

the whether 4& (K=°) is finite (e.g. Yukawa) or infinite (e.g.
Coulomb).

The MSA equations are obtained from the Ornstein-Zernike

(0Z) relations between the direct correlation functions (dcf's) ¢ (-
L‘B ~ 1

and pair correlation functions (pcf's) 3_‘([_): b ey+
-y b} J

and the closure relations:

%._(‘l\ 0 L <G (2.5)
hY

7 ~*3

for the ‘nner hard core excluded region, and

~

~
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in the outer hard core excluded regions. Cqs. (4) and (3) may bde

replaced by the variational equations:

S &

S ..
)

(2.7)

MR T e il

that ensure the vanishing of the pair correlation functions
inside the exclusion region,
The MSA (or RPA) free energy functional, S - B+L is the sunm

of the MSA energy (B + 1/2) and entropy (L - 1/2) functi.onals.\Q

Bapn ) ke Gl w3 T s G (Y

N

-D ] Q
L L 2 S"“‘L‘ s AetL b - C)

(2.9)
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Let _F7 denote the value of f‘ for p-o, i.e. for the hard
o

L

core system.Recall that f; represents the compressibility factor,

Z= pV/NKT

as obtained from the PY (i.e. MSA) equation for the hard core systen,

via the relation [9,10]

3
p
E

fr =(1/2)(2 -1) (2.10)
o C

where ZC denotes 2Z as obtained from the compressibility equation

- state:

i p() Wan\?}--z};c“(i’w (2.11)

-]

If £ represents the excess free energy per particle in units of

kT and £ =1lim £ , then the MSA approximation states that (10)
Hhyo

f-r= . R (2.12)
o
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for the equation of state obtained from the expression for the ererzy
| the system

u =U/NkT=1/2 n 2_' x x. |dr g (r) f #_'(r) (2.13)
“ 3 hd \_) ~ e)f*

v

"

Central to our treatment below is the "Ewald" identity for any

function (Ewald function) 8..(r) for which the Fourier transform gi(k)
\.s Yy o~

exists (4,10] :

1/2 nZ X. X, Kdr g (r) ©..(r) =
v J -~ ‘_“‘ ~ \.) -~

B 1/2 n Zx\.x_ Sdr e (r)
3y = e
J

by

. 172 (am) )(x. xf‘ dk @ (k) S (k)
. N ~ ) fand . -
“j
(2.14)

where the structure factors S.(k) defined by
S‘)\i

.......
~ e
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720

ho~
n (x.x. ) h.
N ) .

)=
wm
~—

(x) = s.(x) -5 (2.
3« g 3

are related by the 0Z relations (2.4) to the the dcf's through the

matrix relation

[+]

o o
S=(-¢) (2.16)

Recalling the compressibility EOS obtained from

P(é?/én) =1-an. X Xd,g c.. (r) (2.17)
T . } LJ - '
X .

VERES AP

then, using (2.13) and (2.14) with 8.(r)= C. (r) we obtain
i~ 4

u= B(C] +1/2+1/2 nZ X.X. jdr g «r){c (r) +ff..(r)]
I AEadiT g © v
‘3

(2.18)




u= B(C] +1/2 (2.19)
MeA

fom which (2.11) is obtained for systems of hard core objects upon
setting u =0.
Mo

Finally note that when the total monopolar charge of the systen

is not zero we need , in the case when ? (k=0)=0 (e.g.the Coulomb case),
'

to introduce a compensating background charge density which is uniforn
in all space, i.e. it penetrates the hard objects.The background
density is equal to -*PTG . The potential energy of the system

including the background is given by

U/NKXT=1/2 an-x fdr h.(r)f f,,(r) (2.20)
[ 3 -~ L)‘ ~ vy A

P

The general expression for FGP/.) n) is thus given by
+

}B{b?/ér}-l- n > X, X. Jdr [C (r) + f  (£) ]
T - LY d \s ind \j

P

)

while the functional B is written as

(2.21)

A RN s




A (AR NI g SR TaT® £ 5,
.

L (2.22)

The sum over orientations, impiicit inZZx{x, ensures that for the
. J
HCGF systems '

?x_x- fdr é,'(r) =0 (2.23)
LI -~ ss Ao
'y

whesnever total monopolar charge neutrality is preserved.In view of ¢this

(see 3,11) below), (2.20)-(2.22) contain (2.8.),(2.13) and (2.17) as

special cases.

T T W
.
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a) Diagonalization of the variational free energy

A strong coupling (SC, superscript oo ) 1:‘.mir.3 for the MSA
is reached when either the hard-core compressibility tends to
zero, or when any of the coupling constants (the charges) tend to
infinity so that the free energy is dominant by the energy term,

© IS

F = B, In either case the dcf's diverge , and in order to

satisfy the non-negativity of the argument of the logarithm in L,

the diverging dcf's satisfy3'4

D 2 ~“3 ~0°
- %
[’_C;.S(*Q-X = C \ <5 (=) (3.1)
—~ D \q
CQK~§<° (3.2)

In view of the closure (2.6) which servers as a boundary
condition for the GF-potential (2.2; 2.3) these relations can be

satisfied only by the following convolution type forms

—~
C{.'\U-l“' constant . ‘S;. Ué,\ }' ‘Uﬁfor hard core SC (3.3)
- s 3 .

vy
[ "“;J

o~ -~

C"'SO“'\ - -(e- ﬁhﬁ\}) \«,2\1) ¢;3. (e for charge SC (3.6)

where SC denotes strong coupling.

The normalized "smearing" distributio:ns, ? (W=2e) =\

Sva, o
are confined to the volume of the hard object i or its surface
and must sactisfy the MSA "boundary condition"” (4). For (3.4) we

specifically conaider the new ("smeared” as opposed to smearing)

......

e e e e e
S e A Ao Al ftarai.tatalalal




"_"-wlwv'.w'_".-."'ﬂ--'_"""'_"(‘ L and snd ok ol 4 '.".‘,VX'C.'._

......
......

i caa- tme carrespoiiing 3Tearz:
coupling constant ?YQ' such wrat
Y

interaction between objects: and J,

Mieaee' 97 e Yo Ve et fieat® T ts) ‘}623:':-:*“

J Y
V. o, .
- RY )

e e s WS T T

(3.5)

2 ey =) C2) cF (V- %' -0
laeloe o g SRUPNRIE R

U, J. Sw o Sy 26’

A

will satisfy the MSA boundary condition (2.6), ngumely

\ KEB; ? ' l&“:),' £ 7§-C ’
,R6 26 6,06 3
(3.6)

Using (3.3) and (3.4) we now consider the strong coupling
MSA problem, which may be posed separately for each diverging
component- i.e. either hard core SC or the SC limit of any of :he
independent coupling constants q¢c"
o o0 )
Inserting (3.3) into q‘;a [ Q 1=O we find a direek
e Wwe
generalization of the hurd-spheres re3u1t3 , namely that the MSA
hard-core EOS diverges when the total packing fraction,

Q1.- (volume of objects/volume of system) = | with the dcf's

satisfying

oD
T (2Y gy = 2y S
" " (3.7)

overlap volume of objects i and j with separation r divided by

the overlap velumeat zero separation.
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In view of the additivity of the total interaction potential

H . " e IEBRTS S
:

in terms of the independent '"charges'", we consider at once the

1)

4

most general case of strong coupling of all charges, although as

stated above, each may be considered separately.

Ingserting (3.4) into the SC-MSA functional B [C‘o ] we

obtain the Onsager-typel"l1

expression for the lower bound for
the true potential energy of the system, given by (for reasons
1 " " .

given below we prefer the '"smeared'" new cha{ges F-QG over Sim‘

This is choice of convenience and using either gives identical

results),

4 B 0] Z ¢ E’QQG(S’;QG\ (3.8)

e
%co.c. (fiee) = 7 Sﬂo (S’TG/’?LG) oA ¥ [ ‘f (<) - "h\-oc,
/et OV QG oG ’
S(sce
(3.9)

-\ .(\::Q)
Z \iL ee 06
) [}

The first (monopolar) term in (33), an Onsager background term,

vanishes for globally neutral systems ( Pr o ° Q). The

second term is minus the self energy of the "smeared" charge

AR SN




distribution. Note the'decoupling of all the components in
(3.8), which is typicarz-6 to the Onsagcr best bound scheme and

is analogous to the diagonalization of the Hamiltonian (sec Sec.

V). The new "diagonal" MSA problem

é‘ Eb{ZG ( ?Ce<;\

J 5. <2 (3.10)

ce G

becomes an electrostatics problem of finding the optimal Onsager

"smeared" distributions.The derivation of (3.8),(3.9) is made

transmarent in (b) bhelow.

Even though a comprehensive analysis of the HNC theory for
hard objects is the asymptotic strong coupling limit (ASCL) has
not been performed yet, the charge strong coupling limit of the
HNC can be shown to be identical to that of the MSA. Thus, the E

results (3.8 ) and (3.10) are equally valid for both HNC and MSA,

and the corresponding "best bound" problem, which as we show 1n

the next section has been solved already by Onsager, many years
ago, provides the ASCL for charge strong coupling for both HNC

and MSA.

..............
...............

.............................
..............................................

...........................
......................
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{b) The Ewald identity and the Onsager Process

Considering the Ewald identity (2.14), notice that electrostatic
interactions between charged particles, namely PQ(E) or WQ(E) of (3.6),
are legitimate Ewald functions qs(g). The left hand side (l.h.s.)
of (2.14)is correpondingly the total pair interaction potential energy
per particle, of the objects carrying the original charge distributions
P:(f) and the smeared charge dstributions ,ﬂ;(ﬁ)' The first term on the
right hand side (r.h.s.) of (2.14) vanishes ,for an electrically neu=ra:

e R e

system (Zx; q.=0 ), since

CZix;xijar ¢ (r) = 1im Eif X. q q Y (k) (k) * (k):
‘.)

8 Xl
!
o e 2~
= lim (x.q.p.(K) ) ?4 (%) (3.11)
kyo © e 6

~

and similarly for ZZx.f !&r T”(r) . f (k) is the FT of the GF potential
— e B T
(e.g. Coulomb).The 'second term of the r.h.s. of (2.14)is easily
recognized to be minus the self energy of the charge distributions, so
that the last term of the r.h.s. of (2.14) represents the total
electrostatic energy (per particle) of the system of charged objects:
z

D 4% w ) 3
1/2(2“)4";’3) dk S, (k) ? RY 2w\[dv >0 (3.12)
) _1
t
) )

&)-n

by f )

wherev%>>o is the surface of a D-dimensional unit sphere, annd E are

oY

’
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Vs  N/V+n).

(RSNt

the total electrostatic energy of ti.e smeared charge distributions, and

rearranging terms.Using (2.14), it is equivalent to the following Ewald

identity (see Fig. 1 ):

Somaarud Sweared

U/N= ( U/N- U /N) + U /N

(3.13a)

1/2 n x,x |dr g (T) %,(5)= 1/2 nZ_1 X ..Jég g.(r) [#“(5)-Y¢(5)1
3 b) ad !-A - L ‘J ~ s) p)
‘g 3 -

Y

)
- - 2 —

+ 1/2(2T) Jix.xY {dk s. (k) ¥ (k) -1/2 ) x.P.(r=0)
2‘...“ ”*’ R PR NG

< / (3.13b)

For hard core Green's function systems (HCGF) (2.5) is exact, so

that due to (3.6) the first term on the r.h.s. of (3.13b) vanishes.3y

(3.12)the second term of the r.h.s. of (3.13b) is non-negative, so tha=

the Onsager type bound is obtained:

U/N > ‘1/2Z};W-<r'°> =-Z}‘u; (3.14)

M 1

where uc is the self energy of the smeared charge distribution q;:(g)

!!
R
]
A
L




arbitrary N (numcer of chjects) zrovided thnat tnhne electronsuTrallTes

preserved.

e e e & & a

Returning to the SC-MSA problem, and denoting by "overbars'" «he
optimized quantities obtained from the solutions of (3.10), we finally
get:

i) The SC-MSA result is an exact lower bound to the potential

energy of the systenm,

-0

U/N> (U/N ) =-)x. 0. = 1/p B(C =3 (3.15)
MSA
= Onsager Bound,despite the approximate nature of ===

MSA free energy

o

ii) The SC-MSA dcf's are given by l/P c,js) = q.(z) =
‘J LS

= the interaction between the optimally smeared charges in objects
i and j of separation r .
(3.16)
Note that as stated in "words", namely in terms of the basic
characteristics of the interactions, our simple expressions (3.15) and
(3.16), uncover the MSA meaning for arbitrary dimensionality.

When there is a background (3.14) takes the form

-------------




vy r it g R S N

~J
~

—1/22, X 9. (x=0) (3.1

\
Note however that the second term of the r.h.s., which represents
the difference of the interaction energies of the smeared charges and
the original charges with the uniform background, is also

diagonal.Indeed, we may write ((featuring, in full ie»i, €,G)

Z‘x x. l(dr [\y (r) ?S ()=

=1/2 nf{x. x.q. q lim [ (k) (k) - o° (k) (k)l (k) g =
L 3 L6 Jo6 hyo f“ fo(: f., P f‘
Ly

-~

=lim 1 /2 X k X > (k k) b =
im /2 n ( x q [f’ ( )+$o (k) 1) (Z‘qu [9 ( )= ”G( )];b (k)
R0 e )

d

W.q.  lim (p (k)= 0° (k)4 (k) =
PT(I:’ Yo 1B [P, (0= po (k) 14, )
3
= 1/2 1l d -
/2p x /3, fg rﬂ.;@) #jsq)l

)9. (3.18)

and we recall that F(R-O)-P' (k=0)=1.

Comparison with (3.9) shows that the MSA or HNC liquid theories,
Sva Paroc]
dictate that the smeared system, represented by U /N in (3.13a) and

discarded in obtaining U /N , should be charge neutral also when

~

f (k=0) #$0 .That is the reason for 5 in (3.9) when ﬁ (k=0)= 0 and we

formally do not need to introduce the uniform background, since the
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<~ % - [ P, S e - - ve Y -y e e .
Jnsager grccess, alctates Tnat the smeara22 s37sTanm sSacul 3=

Uniform Backgrouannd thus be totally charge neutral. Since U
i discarded in the MSA-Onsager estimate cf the potential energy of the

given system, it can be expected to be relativley small only for a

totally charge neutral system.
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4."Onsager Solution" of the MSA or HNC for Charge Strong Coupling

In his classic paper of 1939, Onsager [ll] considered the problen
of obtaining a lower bound to the potential energy of a system of
charged hard objects. His method of solution is consistent with the MSA
boundary condition (3.6) and, in fact, provides the solution of the ASCL
for both the HNC and MSA (3.10).We consider in this section the Cculomb
potential,to avoid the complications and specifice details of other GF
potentials, to which the treatment also apglies.This will allow us <o
use elementary electrostatics in 3 dimensions.We discuss
electrically neutral systems, f%&'@' in the first place, then systems
that are not electrically neutral, and therefore require a neutralizing
background for thermodynamic stability and at the end of this secticn we

give examples for the special case of centrally charged hard spheres.

a) Total Charge Neutrality , ﬁ?G‘O

There are, in general, an infinfite number of ways to replace the
charge distribution of an object,ﬂz‘(f) by a smeared distribution Pds(g)
with the same potential outside of the object. The most obvious ones are
those associated with the spherically symmetric distribution ﬁ-scfix;)
which by Gauss's theorem satisfy the required boundary condition
(3.6) .There is , however only one surface distribution‘ﬁng(g)

which satisfies (3.6). This surface distribution is the one

corresponding to minus the induced charge on the surface of the objects

when the system is immersed in a uniform conducting fluid, as origirally

proposed by Onsager. As is discussed below in a special case, this

B IR
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Trcm this soluticn we ccmpute the ccmponent of tne electri: Tz

normal to the surface of the object, and just inside that surface

<
E A (9=-98." (x) A (4.7)

A 28
~ A

The induced charge on the surface of the object is given by

- <
6. (s)=- E. .(8)/4 (4.8)
. - .,n
The Onsager solution for the optimal smeared charge distribu<:i=z-
F. (x) is
E (x) 3-01: (s) (4.9)
. ~ ~

Onsager's original bound to the potential energy of the systen
was given [11] in terms of the total potential energy of the "Onsager
objects",namely the neutral objects consisting of the original charges
f;(f) plus the surface induced charges induced by them, qﬁ(s). It is
easy to show that this energy is equal to minus the self energy of the

surface charge distributions:

o-ﬂt:ﬂ'
u, ={a f (s) o(s) +1/2 |ds ,ﬁ (s) d(s) (4.10)
S s '

from (4.4),however we obtain

..
<

s .
a™ .
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a :--}ds (s) S(s) = -(self erergy of the surface charge

distribution d(s)) (4.12)

;' In order to get some feeling for the optimization of L. (x)
. SR
i obtained by the surface distribution,consider the special case

¢.°(s)=c.=constant (e.g) a point monopole at the center of a sphere).

Y

The interior potential is given by ¢¢(§)= %o(x)-cb, i.e.

) ¢n(x)=—c°,th§Electric field inside the object due to the surface charge

is zero, Efro.OutsidéEhe objecﬂ?e still have from (4.6) that

~

> S .
E =E. .The general conditionfor the validity of (3.6)is that the field

~vn ~v‘°

outside the object due to the smeared charge is the'same as that due %o

the original charge,

> v,
(g . > =E (4.12)
~ ~\-‘°
Swmeared

The self energy of the smeared charge distribution i given by

z
u, =1/2 .(r=0)=1/8 v .
v / Y»v( 0) l/ W jd I (E\)SW\“'(A |
ot rpace
< t R
=1/81% |av] (E%) |~ +1/87T |AV|(E ) |

* Seneate vol

“wside ovtaide (4.13)

°‘°3"°t ooject

The absolute minimum for this quantity is reached when\Eé =0

. , . Swaetarcel
» which in the case considered above is obtained by the Onsager

solution with E'=0 for P (s)= constant.
to ~

ﬁ\"\
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The Onsager procedure for the MSA-HNC best bound problem of
immersing the system in a uniform conducting fluid,works well when <hers

is a neutralizing background.The Or-ager object now consists of the

s NI & 4 8 I.7.

b original charge distribution F?(x), the uniform background density
" v~

w

5 "trapped" inside the objectcp =-F , and the induced charge on the
L: ° T|6

h

. surface due both to‘Pf and fL .Eg. (4.1) now takes the form

;.

- X <

» )

g V$ (X)) =-4Tp (x) -4lp (4.14)

with the condition (4.2). Denoting by é (x) the solution of

2 ~
==41\ inside object
V0 -, e o

2
V) ¢_b(§) =0 outside object 14.153)

\.,b

with the condition that f (x+0)=0, we use % (x) as defined prior to
Lo~
(4.3) to solve (4.3) with the boundary condition

¢
9“'\(5) "‘5{.‘0(3) - f;’b(f) (4.16)
to get
< <
= + + .
?‘; (0 ?‘;.(1‘.) ?‘;b({) f{“(lﬂ (4.17)
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Thus f (x) ,% (X} and é (X) are, respectively, the electrostat::z
9.0 -~ 9‘6 "‘\ ~
potentials due to f?’,ﬁg and ¢ (s) in the Onsager object. Let us
13

denote by o the original fixed charge of thae object,by b the background
charge and by s the surface charge, and ob,os,bs,bb,ss,..the
electrostatic energies between those charge distributions .bb and ss are
the self energies of the distributionsyb and 6'(5).It is easy to see

that (3.18) may be written , in the case of Onsager smearing as

1/2 WZ;, X |dr (§J. (¥)=- 9 (xr) 1 = —-x.(bo+2bb+bs)- (4.19)
s for ey @1 = 2 xctsormmonn,

“)

while the first term in (3.17), the self energy term of the components

in qi;’l
-1/2 ) x.  (r=0) == ) x .(ss+ bb+bs). (4.20)
L N . <

thus , (3.17) takes the form (see Appendix B)

0
U/N >(U/N) --sz-(ss-bb-bo). (4.21)
Msa ¥ ¥

.-
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: Consider, in turn the total energy of the Onsager objec:

. (relative, as usual to the self energy OfJP?):
Y

Q. scaqer

u . =(bs+bb+gs+bo+o0s). (4.22)
|

It easy to see from (4.16) that
bs+os=-2ssg (4.23)
. so that (4.21) becomes identical to
\ ot Onsaqse .
’ U/N 2(U/N) =+ )x u. (4.24)
msa ¢

.

Thus, when there is a background, the Onsaqer solution for the

optimal smeared charges is

& p.(X) == G (8) -p (4.25)

(¢) Qpecial Gase: hard spherical centrally charged objects.
The most general system for which a formal solution to the MSA
has been found consist of hard spheres of arbitrary sizes with
central point multipolar charges, for which the solution
to the MSA-HNC-ASCL problem (3.10) can be summarized by

& the following simple statement (see Appendix C):

L oad Ak Tt Tk Bt

1
1
1
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All nulripolar charges, £ > 1, should be uniformly smeared on
the surface of the sphere. The monopolar charge, qgo o yshould
be smeared uniformly on the surface and/or uniformly in the
volume of the sphere according to whether gﬁﬁ=do ovr ?to#.o
respectively.

All the analytic solutions of the MSA for HCGF systems, that
are known to us, including hard sphereslz'13. hard spheres with
centrally imbedded point monopolar charge (withla and without
backgroundls)’hard spheres with centrally imbedded dipoles16 and
multipolesl7. mixtures of charged hard spheres with point ions18

hard spheres with monopolar Yukawa chargeslg. obey our relations

G.”),(& 1) and e“\L) with the analytic forms given by (5,\1}/(5,\2>

maintaining it at all densities and temperatures (couplings).
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5. Variational Solutions of the MSA by Expansion in the Onsager
"Basis Ffunctions”.

(a) Analogy with the Hamiltonian variational problem,. :

A typicel liquid state calculation involves a (usually ;

approximate) free energy functional which has to be variational

with respect to the pair functions. In analogy to the
Hamiltonian ( <> free energy) ground state energy problem, the

following "ideal" situation is desirable:

(i) To have a physically motivated, good choice, of a set of
basis "wave" functions ( &> pair functions) which obey all the
symmetries of the "hamiltonian" ( > geometry of the
object and the charge distributions); so that (ii) the pair

functions could be expanded in terms of the basis set, with only

the coefficients (which can be assigned intuitive physical

N I
Y . LT

meaning) to be de:érmine&by the variational free energy. A
minimun set of coefficients must still involve the geometry of
the objects and the values of the charges (iii). Eventually

increasing the size of the basis set (the number of

coefficients), more accurate solutions can be obtained.The exact .

§01ution i3 reached when the complete set of basis functions is
invelved. In general, however,a small number of coefficients will
be required.

. | L,

the systenm.
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The general idea of solving the variational MSA problem by
using a trial dcf with coefficients to be determined by the
variation equations in certainly not new,. Ne+-er before we had,

however, at our disposal the complete set of basis functions as

we now have due to the mapping of the ASCL-MSA on the Onsager
scheme, which provides the exact analytic form of the MSA dcf's,
With trial dcf's having the exact analytic form of the full MSA
solution it is only a method of employing the full set of
required coefficients (i.e. expanding the solution in the

complete set) in order to have, from the variational equations

for the coefficients, the exact solution of the MSA. The Onsager
basis set of functions, constructed by (3.12) using the Onsager
smeared charges, (i) has a physicaly intuitive meaning, (ii)
corresponds to an exact lower bound to the potential energy, and
(111) is constructed by using elementary electrostatics
employing the basig geometrical-physical constraints that must be
taken into account - the liquid state theory part of the problem
does not make the problem more complex than it already is at the
basic electrostatic level. Even if we "stick" to the full basis
set, and attempt an exact solution, this procedure has the clear
advantage of providing a direct physical description of the

solution,

We may, however, with increasing experience, use only those

elements of the basis set which are more important. The

conceptual analogy with the widely used Hamiltonian variational

solutions s complete.




(b) Practical Petails: Examples and Eomments,
The cgmplete basis set of functions for the MSA consist of the
overlap-volume functions (3.7) and the Onsager-smeared
interactions {3.16). Recall that the MSA dcf's outsice the cores
are already specified by the closures (2.6), so that without
further mention it is understood that only the region inside the

COre enters into the discussion.

Example(bl): restricted primitive model (RPM).
The RPM consists of a binary mixture of equal size and oppositely
charged spheres. The overlaps volume function is of the formi3

3 r
Chc(x) = Ao + Alx + A3x , X = . <1 (5.1)

=
The Onsager-smeared interactions between two uniformly surface

charged spheres is of the form{!'S]

CiJ.Onsager(x) - QiQJ(Bo + Byx), x 1 (5.2)

The exact trial solution is of the form:

3
C‘.;'S"‘\’ ("‘.\,; *’&"(\);; x "'Vs);;" K&\ (5.3)

Symmetry considerations will reduce the cn(tiqt number of

independent coefficients.

Example(b2): charged hard spheres in unifornm background.

The Onsager-smeared interactions are of the form: 5]

________________________
............................................
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This happens in general only for hard spheres and for hard
alligned ellipsoids. In these cases. the ASCL solution has the
same analytic form as required of the PYHS theory at low
densities. In the general case, however, the ASCL solution of
the PYHS and the low density solution may have different forms,
so that the overlap-volume basis set (3.7) will not be able to
provide the exact solution at low packing fractions. As an
ad-hoc tentative practical solution to this problem, we suggest
to employ as a hard-core basis set the union, of the set (3.7) and

the overlap-volumes of shapes corresponding to the pair-excluded

AL
B+ LN

Comment(t5): A method due to Percus.

regions, i.e,

(5.6)

Once the exact analytic form of the dcf's is given, an
alternative to the variational solution in provided by the simple
and powerful method of Percus@J% Use the OZ relations to expand
the dcf's around the origin F=o. With the known analytic form
of the solution this will provide the set of Algebraic equations
for the coefficients. 1i.e. a complete analytic solutions without

resort to the factorization techniques

6. Approximations within the PY theory for hard-objects.

The formulation in secs. 1,2 holds also for uncharged hard

objects in the PY approximation. The main points to note is that 53
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has a thermsd-mamic meaning (2 3,

The analogy, pointed out by Onsager, between a mixture of
particles of different orientations and a mixture of hard spheres
of diffrent sizes, is born out manisfestly in our formulation.

In the asymptotic strong coupling limit we predict the following
results for arbitrarily shaped convex hard objects: divergence
at QT =1 ,» (3.7), and (3.1), (3.2).

Consider now the following general approximation,

z —— ~ .
{6__&\5\] = Co(w) C (W) (G.\)
‘§

- J)

by which the generating functional Z. takes the following

("diagonalized") fornm:

o\cas

Z "=+ —L—‘- \z\\':)b A R D-— " Zx; E\.LKB,)] (6.2}

(8

to be solved via

g 20\:‘5 - o L <S;; ((9-3)
JC.\n)

{

In the limiting case when all objects are equal size spheres,
eqs. (6.2), (6.3) reduce to the exact PY equation for 'ard

spheres,
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solution to the PY equation can 2e judged 27 |

e.3, ccmparisin

with the available exact solution for hard sphere mixtures for a
: binary mixture, (6.1 ) leads to the following relation among the
partial structure factors:

Sz () = E S, (W) -1 1[5&%—*} (6.4)

[x 3

This relation holds well only for mixtures of spheres with

relatively small size differences. The Pynn-Lado 21,22 ansat:z

namely

C:;; (:\\ = Co (LZT, \:\/chs{\ (6.5)

where Co ( ,r/R) is the solution of the PV approximation for equal
SsiZe spheres,manifestly violates the overlap-volume analytic form

for unegual size spheres (e.g. compare (5.1) with (5.5)), and so canno*

be expected to be accurate for mixtures with large differences in particle’
si . '
Zes Lado's numerical results are encouraging to pursue this
Line of Scaling type approximation. It would have been of
interest to compa.fe the results of (6.§) to those obtained from (Q 1)
Note that (6.3) is an exact ASCL result, so that (@.5)
awmad (2.0\) quve tWwe exact results for the PY theory near
the - limic:
/SR

Py

[ Z D (6.G)
Vzr—»\ ¢ (\"‘er

It is interesting to observe that the most sucessful theories for

the EOS of mixtures of hard spheres or non-spherical hard
objects, like tha y-expansion and the scaled particle theory,

impliciel assume (6.6 ) or its corresponding "virial" PY-EOS:
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Bonding and Aggregation within the MSA and HNC

Approximations.

One of the aims of Onsager's paper was to investigate

simplified electrostatic metals of bonding and aggregation.

The

mapping of Onsager's procedure on the ASCL of integral equation

theories of fluids,
direction pointed out by Onsager.

Since the Onsager bounds correspond to
of the HNC and MSA theories, it is possible
Onsager bounds with the potential energy of

structures. To the extent that the Onsager

enables us to take a further step in the

the exact ASCL result
to compare the
different possible

energies correspond

to a unique local structure,they may predict the bonding and

aggregation effects within these integral equation theories in
strong coupling, without the need fora detailed solution of those

complex equations.

To illustrate this idea, consider a binary mixture of hard

particles of, say, different sizes, with opposite charges

situated inside the particles just off the surface.

surface boundary, and let <r/6\

Specifically, let be the distance of each charge from its

. 8/‘1«1, where G-\ ’ Gz_

are typical dimensions of the particles. The Onsager self energy

for each such object with charge Q (or-Q) the surface is

oo sz
) /18 (7.1)

o
U = - =

Mae . Oh$&3¢r

U, 2
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This is equal, however, to the potential energy of the two
oppositely charged objects when they are forming a "molecule",
with the equal and opposite charges are at distance 24

from the other (Fig. la). Note that this is a unique local
structure corresponding to (7.1), and thus we are able to
predict that the HNC and MSA theories will feature this bonding
effect when @Cl7i8 221 .

This simple example ca  be generalized to local structures

of higher complexity (e.g. Fig. ].E) and to include polarization

s and other intermal electrostatic effects that lead to aggregare
formation., The treatment of polarization in Onsager's paper can
be readily incorporated into the mapping on the integral equation
theories. It may be thus possible to consider complex structures
as rings, water etc. Although the possible aggregates that
complt; with Onsager's bounds do not always represent a unique

local structure (e.g. charges near the centers of tre objects)

they should be of help in the analysis along the lines set by
Onsager's work, which -in view of ov{ analysis- it is now

possible to pursue.




8. Further Implications and Conclusions

The physically intuitive meaning of the dcf's and its role in a
variational solution of the MSA -HNC type equations by expansion in the
"Onsager basis set" , is not limited to uniform systems. It is a
standard procedure [27), in the treatment of a system of hard particles
near a neutral or charged wall (e.g. fluid near an electrode), to
consider a mixture of different size particles and to let cne radius 3o
to infinity.This one particle represents the hard wall.In such a
limiting process, done in the context of a specific approximaticn, suczh
as the MSA or HNC preserves the fundamental form of thé various dcé's
(particle-particle,particle-wall) retains its intuitive meaning as
overlap volumes or smeared interactions, and the procedures, as
discussed in this paper, can be carried out in complete analogy to <he
uniform fluid case.Work along these lines is currently under way.

The Onsager procedure in conjugation with the Ewald identity
serves as a guideline for the solution of the ASCL of th HNC or MsSaA
equations for systems of concentrated charges without hard cores,

e.g. plasmas , line charges, etc.(namely, the soft-MSA context,(2,3,6])

It provides the rationale for the emergence of the "ion-sphere"
boundary conditions in the treatment of high density electrons+ions
matter [3b).The insight we gain from te general HNC-MSA problem for
HCGF systems may be used also in constructing analytic solutions for
centrally charged spheres for non-uniform systems .Examples of such
solutions are currently under investigation.

Our novel method applies to models of matter of a wide variety,




approach will motivate more arz..caticns. N
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Appendix A: Restricted Primitive Model (RPM) of electrolytes.

The RPM consist of a mixture of charged hard spheres of
equal sizes, and obeys total charge neutrality Zx_- @:;o‘ The

MSA for this model has been solved exactly to give the following

, (1)
def's:

2

C..(\=: C Q. Gy L3l res
o f\ 9(."\ -+ 3.(” ‘R.; 61\_\* 6@ A.1)

where B has the property

Ao B - =1

Q—!-Q (A.2)

and Co (r) is the PYHS result for equal size spheres of diameter
B

In the limit Q> e we have

raq .
Sl Cn ~> Qu G I\-Ls_lsqm
P 3 Q:--deco (le) & (4.3)
where kfgr) is the electrostatic interaction between two

uniformly surface charged spheres.
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Appendix B: Charged hard spheres i uniform penetrating

background )
r
Defining (‘:Qt/c'\f ' VZ_'-’.Z\TZ nT ' X'/G‘ and taking the
limit ¥ = for fixed % <\ , the solution of Palmer and
() av)

Weeks (PW) takes the form:

2 2 b3
/Qoul-v.‘ C\I‘)/Y\ = qr(,g\._. PR -3_2— - (\-z))g _H‘ZX
) s

(B.1)
Fsoe 3 v 5
+ nlas) X - =9 f‘. x e
Note that b (<) can be written as
> )
W Yo 0 ‘-\'“(ﬂ - L\*Ws (5.2
where

-
(B8.3)
*Ss£n7: b-?) (A—A)
(B.4)
YoV = 200 (-4 xTr 2x%)
(B.S)

These functions are, respectively, the volume-volume,
surface-surface, and volume-surface, electrostatic interactions

between two spheres of unit diameters, each composed of charge

.
S
el
- A




(l-? ) spread uniformly on the surface, and charge ? spread uniformly

in the volume.The Onsager object consists of the negative of these

charges plus the original central unit point charge.Using (¥=1) the
definitions of sec. (4.b)
%
ss=(1l-n_ )
“
bb=6/5 n
bo=-3q_
*
os--2(1-q.)
bs=2n_(1-n ) (B6)

we find that , in accordance with the results of section (4.b) the

internal energy is

o

B(U/N)  =-(1+n - )& =-ss+bb+bo

(B7)
MS A

in agreement with the result obtained by direct integration of (3.17).

Appendix C : Onsager Solution for Hard Spheres with Centrally Imbedded
Point Multipoles.
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Appendix C : Onsager Solution for Hard Spheres with Centrally Imbedded

- Point Multipoles.

Consider a sphere of radius R with a centrally imbedded multipole

of order 1 .The potential due to the central charges is

Qe
g (= AW Ja % (9,4)/F (c1)
0 ~ ZQ—*\ QM .

LY
2
We solve the equation 4 =0 inside the sphere with the boundary
> .

condition ? (R)--¢ (R) (see Sec.4).The solution for the interior is
[ S

$ (x)= 4T ZA Y, (8,9) 2 (c2)
|~ —_ Ly Qa .
by 23
L)
. where
~(22+y)
ALW--qlE (C3)
The potential inside the sphere is
. < - e g - ate)
v 3 ()= 4T 2::, Y (8,4)(r -rR ) (ce)
,.: lt?\ ~ v Twa

The normal component of the electric field on the inside surface

of the sphere is

3 ~Len)
E (R)= 41‘(th ¥ (8,4) R (c3)

2 = (20+1)/(f+1) E(R)
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density
g (R) == Eg(R)/4T =-p (I) (c6)
satisfies the charge neutrality condition
3 * - e
dr Y (e, - o7
fr.w( f)f(g)r o (C7)

LR N

spread of the multipole on the sphere.In the case of.a sphere with a
point dipole p in the center (pointing in the direction of z), we have
>

&  (R) =-3p cos 8/4TR (C8)
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The MSA for the ion-dipole mixture was solved some years
33023'25{. Although the unequal size case was discussed a
complete solution of this model is c:till not at hand.

Our present method, however, allows us to construct the DCF

e o ey v 0.0 0O T T

in the ASDL from purely electrostatic calculation consider first
the most general case of two spheres of radii b, and b, andcharge
distributions SDUO\\ g}(b\ The center to center distance is

. N

->
Al . The interaction energy is

. = Ao Ao g‘i‘ 'K“’a\ ‘ (“:."3."“2:.‘\
Wy = (e, dey e glen Y .

Assume first that b1>b2. Then we can write (D1) in the form

s u

¢ R L4
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L
3
b .
\l\r.. = ‘SOX‘Q)_ gkélv ¢; (-.""") (D.2) ;-
\-3 ) ”
7.4
v
where 41(5..5) is the potential due to the charge smeared on the x
surface of sphere 1. .
S\ L Adb o (k j__L_____m-J——— o
¢&&UL\- | >v ~ \o 0
: FRTA (0.3)

now for multipolar charge distributions on the §urface of the

sphere we have

5&!’—‘3\ E o:A © (o)

() =

N
in a laboratory fixed reference frame. o, = (b\,Hjis a vector

—

P
pointing to the direction o, "f‘,el in a
L
reference frame fixed to molecule i. Q;}s the value of the

. 25
multipole moment of order a, polarizationfh.we use Edmonds

notation for. the Wigner spherical harmonics

> %y = (o & “s)x(v“" ‘XV‘W:(Q‘,L?.\)

O)ﬁ Qg+
-5

We adopt a reference frame in which the z-axis is the r vector. )
Then
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iy ~

Q where now b\ ., is the directiaan 'n a molecular reference frame

-

. and the Eu\erangles JL, = 3, K‘ ., give the orientations of
molecule | in this frame. (hoosing the origin of the coordinazeas
at the center of 1 we write (D.3) 1n the form

\ "

/ ~ /] —
g,g & = 3“::)\ Sq ly —% \ (D.7)

hd 'pv\ ~2
with
-t
= V¥V =« <

~ ~ ~a (D.8)

We expand now the last factor: Indeed we will have two cases

e .
CF' . X, > b, Region outside !

-

¢: )‘\_ 4 |°|

Region inside 1

we get

6
1}
&
c. O
+
——

(D.9)
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An 7‘1 SR :
v A ey ' " -'
4). = Z a D, (J‘LJ(_) — X, Dw oy
< N el PRV ool <, \X) (D.11)
Ry Y7 b A’ o
; so that finally
- VA
W, = D W t
s B * (D.12)
oA
L. .
WA A wy “ A ) \ _\_»uv\
W - @ a, D (=)D (52, X
) v -~ Ly ~ %< (D.13)
* MV 4 1/» v
with
wan @ v
TMV\ - I ' -+ I ‘..-
x * % (D.14) =
where ;
- w -
Vvawn € ! b | \OW\ ™ “ n ~ -
T '_ (9 Swg’- Ab, wio L Dx (%) jDoonz)
- - N ™ e -~X o
* ‘Q“(Iv\abt\ ) 8“‘ 2 (D.15)
L] , e
T = i S ) -
- M a d0, s X ma A
h
2 * 47 (2w) 5 f. e PRV CO R N
: © © b, “Xo ¢ A
(D.16) 3

: s B _= (b -\oxl—r}/(zr\ol‘)




LARs Rl A0 RUL EVUL T TR Y

s e s v

T OV VIS vy B ¥ s « ¥

A
where the angle 7‘1-5,_‘ @, is defined by

Lez="§x

D.17
Cd')ala (l‘-\-b,_‘«'hba.)/xl ( )

L8, = o :.«‘.Mea./x’_
The evaluation of the integrals (D.15) (D.16) is straight

forward. We quote the results for m, n=0,l,

Ton-ion interaction

c* w® _ (a5 71 N ; 2 |
- Wooe T = L(‘O‘-b._) * J—"‘((O\*\'(OL\-("1 (D.\S
$ob, T :

.
This form agrees exactly with the ASCL of that given by Hiroike 6.

Vhen b\=b‘=_b__ » then wve get

- —_—
: o 2 e
"ro-‘ k“o) ;[_‘-_.".'_'S:ze. C\_,__f-_ (D-ﬁ;
b “b e )‘6] ’
in agreement with knowm result (A3) , For thme Lowu- Avpole case
wnhe
{ ]
. o o t
C P s an e w ik 2T QOZ a D _tm) L
o °. a0 - # g rtoL
N 3 /-
(-3¢ v ey, + o0y » (oiwy’ (hesb) | > )
and finally the dipole-dipole
=0
W"H = T ' ) 'D‘ ¢
° | wp a Ln‘\) \
o0& o e APANEY 3T
e LAY
6
%Lr - ar (b*b)1—8r (‘o% b 5 (S .2\
g 1)‘("3“"’-‘3 [(\’°‘°1)+6l¢|9]; N

'l-
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Fig l: The Onsager process in pictures. The first "liwe is the
Ewald Cdewtitg \.e, we add and substract the energy of exactly
the same system as the original but with the Onsager smeared

charges replacing the original charges (see the text)
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Fig 3: Bonding and Aggregation (see the text)
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which is view of (5.1) is also the form of the exact trial

function.

Example(b3): hard spheres will imbebbed monopoles and

dipoles.

For unequal size spheres, the overlap value function has the forn

(with XK= r= N ): L3

"
Y

(-2

C\x,\r\c}r\ * A. " &

]
LS

Y 3 1’)(‘
=A°*(3=-""6*”'*\“ % (5.5)

ALTE T AT,
The Onsager smeared functions are given in Appendix D. when

forming the trial dcf's we keep the angular dependence and attach

coefficients to the radial part of each function. Compare w -th

Wertheim$ solution. L'wd)

Comment(b4): overlap-spheres and pair-excluded volumes for

hard objects.
At low densities, at the 2nd virvrial level of approximation, the
hard-core dcf is given by the overlap-volume of two objects

having the shape of the pair excluded volume between the two

relevant particles. As long as the pair excluded volume has the

Same shape as the two hard particles, then the two kinds of

Overlap volumes mentioned above have the same analytic form.
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